DOI: http://dx.doi.org/10.18782/2320-7051.6620

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6 (6):** 1127-1138 (2018)

Research Article

Efficacy of Mulch, N and K Application on Plant Growth and Yield Characters in Annual Chrysanthemum

Kevalkumar Sanas, B. S. Dilta and Suryapal Singh^{*}

Department of Seed Science and Technology, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry Solan (Nauni) 173 230 HP India *Corresponding Author E-mail: surajahlawat06@gmail.com Received: 16.06.2018 | Revised: 25.07.2018 | Accepted: 1.08.2018

ABSTRACT

The present investigation was conducted to study the effect of mulch, N and K application and their interaction on plant growth characters, yield and yield attributes of annual chrysanthemum (Chrysanthemum coronarium L) using three types of mulches (i.e. Crop residue mulch, Silver plastic mulch and Black plastic mulch) and four levels of nitrogen and potassium i.e. $0 g N + 0 g K/m^2$, $20 g N + 10 g K/m^2$, $30 g N + 20 g K/m^2$ and $40 g N + 30 g K/m^2$ along with a uniform dose of phosphorus @ $20 g/m^2 \& FYM$ @ $5 kg/m^2$ except control. Black plastic mulch recorded maximum values w.r.t. plant height, plant spread, number of branches per plant, number of flowers per plant, flower diameter, number of seeds per flower head, seed yield per plant, seed yield per plot whereas in case of N and K application maximum values of these parameters were observed in case of the application of $40 g N + 30 g K/m^2$. The interaction effect of black plastic mulch $\times 40 g N + 30 g K/m^2$ recorded maximum values in terms of various growth, flowering and seed quality parameters of commercial importance.

Key words: Plant growth, Yield, Chrysanthemum, Chrysanthemum coronarium L., Seed Quality, N and K Application

INTRODUCTION

Annual chrysanthemum (*Chrysanthemum coronarium* L.) belongs to family Asteraceae and has originated in South Europe. Annual chrysanthemum has special importance during festival days as its flowers are in great demand and is also grown in beds for garden decoration and as pot plants. It has been established as one of the most important flower crops grown in India mainly in Maharashtra, Karnataka, Tamil Nadu, Andhra Pradesh, Telangana, Uttar Pradesh, Punjab and Haryana. Annual chrysanthemum is also

known 'crown daisy' 'garland as or chrysanthemum'. In India, the crop has been naturalized and locally called 'Bijli' in Nagpur²², 'Babbona' in Harvana²³ 'Guldhak' in Punjab, 'Market' in Delhi and 'Gendi' in Uttar Pradesh¹. Annual chrysanthemum is a hardy, vigorous and tall growing annual attaining a height of about 100 to 140 cm tall. The leaves are deeply cut and lanceolated, and flower size varies from 2.5 to 6.0 cm depending upon varieties, species and other factors.

Cite this article: Sanas, K.K., Dilta, B.S., Singh, S., Efficacy of Mulch, N and K Application on Plant Growth and Yield Characters in Annual Chrysanthemum, *Int. J. Pure App. Biosci.* **6**(6): 1127-1138 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6620

The flower colour is usually yellow or white with cream zone at the centre having single to fully double forms⁷. They are mainly classified as large and small flowers. Among the various factors influencing growth and flowering of annual chrysanthemum, balanced nutrition is also very important. The growth and development of plants generally depends on their judicious feeding right from very beginning till the harvest. Annual chrysanthemum is a heavy feeder of major nutrients and hence warrants for larger requirement of N, P and K. The emphasis at an early stage for better vegetative growth should be especially on nitrogen. Plant growth during initial seven weeks needs maintenance of higher levels of nitrogen and plants do not need additional phosphorus throughout the growing period and it should be applied as a basal dose only²⁰. However, Joiner and Smith¹⁶ emphasized the need of phosphorus during initiation of flower buds and subsequent development of flowering buds. Whereas, potassium is required by the plants right from initial plant growth till flowering.

Thus, to standardize the optimum doses of nutrients (N & K) as well as use of mulching for better growth, flowering and yield of quality seeds in annual chrysanthemum the present investigation was conducted to determine the effects of mulching and nutrients (N and K) doses on growth, character, yield attributes and seed yield of chrysanthemum.

MATERIAL AND METHODS

The present investigation was carried out at Khaltoo experimental farm, Department of Seed Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P. during the year 2014 to 2016, located at an altitude of 1250 meters above mean sea level having a latitude of 35.5° N and longitude of 77.8° E. During the cropping season, mean temperature varied from 9.85 to 23.50 °C while relative humidity ranged from 45 to 63 per cent with minimum rainfall (0.00 mm) in the month of November, 2014 and maximum rainfall (213.00 mm) in March, 2015(Table 1).

Table 1: Mean monthly meteorological data of Dr. Y. S. Parmar University of Horticulture and Forestry,Nauni, Solan (H.P.) for the year 2014-15

Month	Rainfall	Т	Temperature (°C)		
		Maximum	Minimum	Mean	Humidity
					(%)
October, 2014	15.70	25.70	10.30	18.00	60.00
November, 2014	0.00	23.60	5.70	14.65	49.00
December, 2014	75.60	19.70	2.40	11.05	58.00
January, 2015	49.40	17.10	2.60	9.85	63.00
February, 2015	67.00	19.60	5.70	12.65	59.00
March, 2015	213.60	21.40	7.80	14.60	58.00
April, 2015	71.80	25.40	11.90	18.65	58.00
May, 2015	16.10	31.30	15.70	23.50	45.00

The healthy, disease free, bold and uniform seeds of annual chrysanthemum (Chrysanthemum coronarium L.) were obtained from the Department of Floriculture and Landscape Architecture, Dr. Y.S. Parmar University of Horticulture and Forestry Nauni, Solan (H.P.). These obtained seeds were sown in nursery beds. Each seed was covered with sieved well rotten Farm Yard Manure and watered properly. The experiment was laid out in randomized block design comprising of sixteen treatment combinations of mulches (M₁: no mulch; M₂: crop residue mulch; M₃: silver plastic mulch; M₄: black plastic mulch) and four levels of nitrogen and potassium(N₀K₀: Control *i.e.* no fertilizers; N₁K₁: 20g N + 10g K/m²; N₂K₂: 30g N + 20g K/m²;N₃K₃: 40g N + 30g K/m²). A constant dose of phosphorus @ 20 g/m² and FYM @ 5 kg/m² (except control) was applied uniformly.

Int. J. Pure App. Biosci. 6 (6): 1127-1138 (2018)

The sources of nitrogen, phosphorus and potassium were Urea, Single Super Phosphate (SSP) and Muriate of Potash (MOP), respectively. The half dose of nitrogen and full doses of phosphorous and potassium were

Sanas *et al*

applied at the time of field preparation. The remaining half dose of nitrogen was applied after 30 days of transplanting. Calculations of different fertilizers doses are presented in Table 2.

	Table 2: Calculation of fertilizers doses:						
	Nitrogen doses		Potassiu	m doses			
(Source U	rea; 46 % N; Quantity	v of urea in g)	(Source MOP; 60	% K; Quantity of			
	1 st dose	2 nd dose	MOP	' in g)			
N ₀ (0 g)	0 g/m ²	0 g/m^2	K ₀ (0 g)	0 g/m ²			
N ₁ (20 g)	21.74 g/m ²	21.74 g/m ²	K ₁ (10 g)	16.67 g/m ²			
N ₂ (30 g)	32.61 g/m ²	32.61 g/m ²	K ₂ (20 g)	33.33 g/m ²			
N ₃ (40 g)	43.48 g/m ²	43.48 g/m ²	K ₃ (30 g)	50.00 g/m^2			

Table 2. Calculation of fourtilingue descen

Healthy, disease free and stocky seedlings of uniform size and vigour at 5-6 leaf stage were selected and transplanted on the beds of 1 m \times 1 m size accommodating 9 plants with a spacing of 30×30 cm. The plants were gently watered or irrigated daily during summer months and twice a week during winter months in the entire cropping period. Frequency of irrigation was altered depending on the prevailing weather conditions. Weeds were removed manually as and when they appeared to keep the field free from weeds. Prominent weeds found during cultivation were Oxalis sp., Cyperus rotundus, Trifolium repens, Cynodon dactylon, Parthenium sp. etc. Hoeing was started right after few days from establishment of seedlings and practiced when hard crust formed over the soil surface. After 30 days of transplanting, the plants were pinched so as to encourage lateral growth.

The plant height was measured with a meter rod from the ground level to the top of apical shoot at the time of peak flowering for every plant. The average height of plants was worked out and expressed in centimetres. Plant spread was measured as the average of distances between apices of a plant in East-West and North-South directions with a meter rod at the time of peak flowering. The average spread of plants was worked out and expressed in centimetres. The number of branches produced in each plant during the entire season were counted and recorded accordingly. The total number of flowers produced in each plant during the entire season was counted and average number of flowers per plant was worked out accordingly. Size of ten flowers on each plant was recorded at the time of peak flowering as the average of distance between apices of petals in East to West direction and distance between apices of petals in North to South direction at the fully opened stage. The average flower diameter was worked out accordingly and expressed in centimeter. Total numbers of seeds were counted from ten flowers selected at random and average value was worked out to calculate number of seeds flower head in each treatment per combination. The seeds harvested from each plant were dried in shade, properly cleaned and weighed with an electronic balance and average was worked out. Seed yield per plot was calculated by weighing the total seeds produced by all the plants of a plot. The statistical analysis was done as per design of the experiment as suggested by Gomez and Gomez¹⁰.

RESULTS AND DISCUSSION

Maximum plant height (132.12 cm) was recorded with the use of black plastic mulch (M_4) and found to be significantly higher over all other treatments .Whereas, minimum plant height (126.32 cm) was observed with no mulch (M_1) . Mulching provides a favorable environment for growth which results in the

production of more vigorous and healthier plants. Consequently, the plants might exhibit more tolerance to pest injuries. Mulching is known to increase the soil temperature, moisture content and stimulate root growth which leads to greater plant growth. Therefore, mulched plants usually grow and mature more uniformally than unmulched plants^{4,28}. Similarly, Chawla⁵. had reported maximum plant height (70.91 cm) with the use of black plastic mulch in african marigold. Similar results have been reported by Kumar *et al.*¹⁸, in rose and Shinde et al.³², in chilli. The tallest plants (136.37 cm) were produced with the application of 40 g N + 30 g K/m² (N₃K₃) and found to be statistically superior to all other doses. However, minimum plant height (118.75cm) was observed with no application of nitrogen and potassium (N₀K₀) *i.e.* control. The combined doses of nitrogen and potassium had also influenced plant height significantly. Taller plants were produced with higher doses of combined applications of nitrogen and potassium. The results are in agreement with the findings of Chezhiyan et al.⁶, who reported highest increase in plant height of chrysanthemum during 1984 and 1985 with the application of NPK @ 20: 20: 20 g/m² and minimum with no application of NPK. Javaprabha and Shakila¹⁴ also observed that application of nitrogen and potassium in higher doses i.e. @ 150: 150 mg/kg of soil significantly increased the plant height of celosia in comparison to control. Javid et al.¹³, also recorded maximum plant height of zinnia cv. 'Dahlia Flowered' with the application of NPK @ 30: 20: 20 g/m^2 and minimum in

control (i.e. without fertilizers). Sharma and Singh³⁰ observed tallest plants (79.15 cm) in gladiolus with the application of NPK @ 40: 20: 20 g/m², whereas, minimum plant height (63.37 cm) was obtained in the control (i.e. no fertilizer application). The results also got support from Barad et al.³, who recorded the highest plant height in gerbera (32.90 cm) with the application of highest levels of fertilizers (*i.e.*NPK @ 20: 10: 20 g/m²). Interaction effects of mulches, N and K application (M \times NK) had also exhibited a significant effect on plant height. The interactive effects of mulches, N and K application resulted in maximum plant height (139.20 cm) in the interaction, $M_4 \times N_3K_3$ *i.e.* combined application of mulching with black plastic sheet and fertilization with 40 g $N/m^2 + 30$ g K/m^2 . However plant height was recorded to be minimum (115.66 cm) in the interaction, $M_1 \times N_0 K_0$ *i.e.* when no application of nitrogen, potassium and mulch was practiced (Table 3). Mulching with black plastic sheet might led to better absorption of nutrients, check growth of weeds and also temperature moderation and as a result of which the plant growth in terms of plant height is increased significantly especially with the application of higher doses of nutrients (N & K). Easmin et al.9, reported maximum plant height (48.77 cm) in Chinese cabbage with the application of 250 kg N/ha and black polythene mulch. Similarly, Islam et al.¹², also observed taller plants in onion when the plants were fertilized with 120 kg N/ha + 112.5 kg K/ha and mulched with straw mulch.

N & K application Mulches	N ₀ K ₀ (Control)	N ₁ K ₁ (20gN+10gK/m ²)	N ₂ K ₂ (30gN+20gK/m ²)	N ₃ K ₃ (40gN+30gK/m ²)	Mean
M ₁ (No mulch)	115.66	121.33	134.26	134.03	126.32
M ₂ (Crop residue mulch)	116.33	123.00	132.43	135.50	127.02
M ₃ (Silver plastic mulch)	121.00	125.00	132.26	136.76	128.75
M ₄ (Black plastic mulch)	122.00	132.50	134.80	139.20	132.12
Mean	118.75	125.45	133.44	136.37	
CD _{0.05}		M:0.81; NK:0.81; M × NK:1.62			

Table 3: Effect of mulch, N and K application and their interaction on plant height (cm) of annual chrysanthemum

Copyright © Nov.-Dec., 2018; IJPAB

Among different types of mulches, maximum plant spread (25.62 cm) was recorded with the use of black plastic mulch (M₄) and found to be significantly higher over all other mulching treatments (Table 4). Whereas, minimum plant spread (20.75 cm) was found with no mulch (M_1) . The plants attained wider spread with the application of black polythene mulch and may be due to the fact that black colour polythene has more capacity to regulate soil temperature as compared to other mulch materials. In addition to this, no weed infestation was seen under black polythene mulch treatment. Chawla⁵ reported maximum plant spread (53.05 cm) in african marigold when plants were mulched with black polythene mulch. Similar results were also reported by Kumar et al.¹⁸, in rose when mulching was done with black polythene sheet. The widest plant spread (34.35 cm) was observed with the application of 40 g N + 30g K $/m^2$ (N₃K₃) and found to be statistically superior to all other doses. However, minimum plant spread (17.09) was reported with no application of nitrogen and potassium (N_0K_0) *i.e.* control. Plant spread was also influenced significantly with the combined applications of nitrogen and potassium especially at higher doses. Maximum plant spread was reported with higher doses of combined application of nitrogen and potassium which could be as a result of the fact that application of nitrogen and potassium at higher doses might have put up more plant biomass especially the formation of lateral shoots. Sharma et al.²⁹, reported increased plant spread in chrysanthemum with the application of NPK @ 30: 30: 30 g/m². Sharma *et al.*³¹, have

observed highest plant spread (49.12 cm) in barleria with the application of 30 g/m^2 each of nitrogen and potassium. Minimum plant spread (31.78 cm) was observed with no application of nitrogen and potassium. Interaction effects of mulching, N and K application (M × NK) had also exhibited significant effects on plant spread. The interactive effects of mulches, N and K applications have resulted in maximum plant spread (3.40 cm) in the interaction, $M_4 \times N_3 K_3$ *i.e.* mulching with black plastic mulch and fertilization with 40 g N/m² + 30 g K/m². The plant spread was recorded to be minimum (16.20 cm) in the interaction, $M_1 \times N_0 K_0$ *i.e.* when no application of nitrogen, potassium and mulch was given. Plant spread was also increased significantly with combined applications of nitrogen and potassium especially at higher doses along with the use of black plastic mulch. The wider plant spread with the use of black polythene sheet in combination with higher doses of nitrogen and potassium could be attributed to the reason that black plastic sheet might have created congenial environment at the root-zone, besides improving the various physicochemical and biological properties of soil, The application of higher doses of nitrogen and potassium might have assured the optimum supply of N and K for the plants needed for requisite growth and production of more biomass. Hence, more plant spread. Easmin et al.⁹, had also reported maximum plant spread (69.84 cm) in Chinese cabbage with the combined applications of 250 kg N/ha and black polythene mulch.

Table 4: Effect of mulch, N and K application and their interaction on plant spread (cm) of annual chrvsanthemum

		J~			
N & K application Mulches	N ₀ K ₀ (Control)	$\frac{N_{1}K_{1}}{(20gN+10gK/m^{2})}$	$\frac{N_2 K_2}{(30 g N + 20 g K/m^2)}$	N ₃ K ₃ (40gN+30gK/m ²)	Mean
M ₁ (No mulch)	16.20	18.73	19.63	28.43	20.75
M ₂ (Crop residue mulch)	16.63	19.20	22.10	34.00	22.98
M ₃ (Silver plastic mulch)	17.33	20.30	24.50	36.56	24.67
M4(Black plastic mulch)	18.20	20.43	25.46	38.40	25.62
Mean	17.09	19.66	22.92	34.35	
CD _{0.05}		M:0.57	7; NK:0.57; M × NK:1.54	1	

Sanas <i>et al</i>		App. Biosci. 6 (6): 1	. ,	ISSN: 2320		
Maximum number of	branches pe	r plant the	e number of branch	nes per plant. The	highest	
(26.41) was recorded v	with the use c	of black nut	mber of branches J	per plant was obser	rved in	
plastic mulch (M ₄)	and found	to be bla	ick plastic mulc	h. Srivastava <i>et</i>	al. ³⁴ ,	
significantly higher over	er all other m	ulching rep	oorted that the	black polythene	mulch	
treatments (Table 5).	Whereas, m	inimum exl	hibited maximum	number of branch	nes per	
branches per plant (21.0	6) were found	with no pla	ant (21.94) in chi	lli. Kumar <i>et al</i> . ¹	⁸ , also	
mulch (M_1) . The m	aximum num	ber of rec	corded more numb	er of branches pe	r plant	
branches per plant (31.7	77) was produc	ed with (5.	19) in rose with th	ne use of black pol	ythene	
the application of 40 g N	$N + 30 \text{ g K} / \text{m}^2$	$^{2}(N_{3}K_{3})$ mu	ılch. Ashrafuzzam	an <i>et al.</i> ² , also ot	served	
and found to be statistic	ally higher to a	all other ma	ximum number	of primary branc	hes in	
doses. However, mi	nimum numl	ber of chi	illi under black pl	lastic mulch. Num	ber of	
branches per plant (17.9	93) was observ	red with bra	anches per plant in	ncreased with appl	ication	
the no application of n	itrogen and po	otassium of	higher levels of	nitrogen and pot	assium	
(N_0K_0) . Interaction effect	cts of mulch, N	and K wh	nich could be	as a consequen	ce of	
application (M \times NK) had also e	xhibited pro	oduction of more b	iomass of plants w	ith the	
significant effects on nu	umber of branc		application of higher doses of nutrients.			
plant (Appendix-II). The	e maximum nu	mber of Do	Dorajeerao et al. ⁸ , reported more branches per			
branches per plant (36.3	3) was produce	ed in the pla	unt (41.81) with the	ne application of	150 kg	
interaction, $M_4 \times N_3 K_3$	<i>i.e.</i> with the co	ombined N/	ha along with 1	00 kg K/ha in g	garland	
effect of black plastic m	· ·		rysanthemum. Sin	nilarly, Sharma e	$t \ al.^{31},$	
$40 \text{ g } \text{N/m}^2 + 30 \text{ g } \text{K}$	K/m^2 . The num	mber of rep	orted maximum	number of branch	les per	
branches per plant v	was recorded	•		the application of	N:P:K	
minimum (15.13) in t	he interaction,	, $M_1 \times @$	$30:30:30 \text{ g/m}^2$.	Thaneshweri ³⁵ ha	d also	
N_0K_0 <i>i.e.</i> when no ap	plication of n	itrogen, rep	oorted more branch	es per plant in hyd	Irangea	
potassium and mulch	was practice	ed. The wh	en nitrogen and p	otassium was app	lied at	
mulching had exhibited	significant eff	fects on high	gher doses.			
Table 5: Effect of mulch, N and K application and their interaction on number of branches per plant of						
		annual chrysanthe				
N & K application	N_0K_0	N_1K_1	$N_2 K_2$	N_3K_3	Mean	
Mulches	(Control)	(20gN+10gK/m ²)	(30gN+20gK/m ²)	$(40\mathrm{gN}+30\mathrm{gK/m}^2)$	un	
M ₁ (No mulch)	15.13	19.33	22.35	27.43	21.06	

Table 5: Effect of mulch, N and K application and their interaction on number of branches per plant of
annual chrysanthemum

21.39

21.51

23.00

21.30

24.86

25.50

26.16

24.72

M:0.60: NK:0.60: M × NK:1.20

Maximum flowers per plant (257.93) were produced with the black plastic mulch (M_4) and found to be significantly higher over all other mulching treatments (Tabe 6). Whereas, minimum number of flowers per plant (248.92) were recorded with no mulching (M_1) . The application of 40 g N + 30g K $/m^2$ (N_3K_3) resulted in the production of maximum flowers (264.38) per plant and found to be Copyright © Nov.-Dec., 2018; IJPAB

17.00

19.39

20.20

17.93

M₂(Crop residue mulch)

M₃(Silver plastic mulch)

M₄(Black plastic mulch)

Mean **CD**_{0.05}

> statistically superior to all other doses. However, minimum number of flowers per plant (237.25) was observed with no application of nitrogen and potassium (N_0K_0) i.e. control. Interaction effects of mulching, N and K applications $(M \times NK)$ have exhibited significant effects on production of number of flowers per plant. The maximum number of flowers per plant (266.13) was produced in

23.14

25.10

26.41

29.33

34.00

36.33

31.77

Sanas <i>et al</i>	Int. J. Pure App. Biosci.	6 (6): 1127-1138 (2018)
$M_4 \times N_3 K_3$ <i>i.e.</i> combined	l effect of black plastic	plants were mulched with b
mulch and application v	with 40 g N/m ² + 30 g	The results are also in ag
K/m^2 and found to be s	tatistically at par with	earlier findings of Locher
the interaction, M_3 \times	N ₃ K ₃ (264.66). The	pepper. The combined app
number of flowers per	plant was recorded to	plastic mulch along wi
be minimum (232.01) v	with interactive effects	potassium especially at hi
of $M_1 \times N_0 K_0$ i.e. wh	nen no application of	positive effect in terms
nitrogen, potassium and	mulch was practiced.	development of plants, thus
Number of flowers	per plant increased	flowering by producing mor
significantly with the	use of black plastic	in comparison to the appli
mulch due to the fa	ct that black colour	and potassium at lower do
polythene have more ca	pacity to regulate soil	al.6, reported highest numb
temperature than oth	er mulch materials	plant in chrysanthemum dur
making more favorable	micro climate for the	with the application of NPK
growth and flowering o		and minimum when NPK w
Gopinath had ²⁴ reporte	d that plants mulched	doses or no application wa
with black polyethylene	e mulch had produced	<i>al.</i> ³ , also found highest num
more number of flower	rs per plant. Chawla ⁵	plant (24.55) in gerbera (3
also observed more nu	umber of flowers per	production of highest leve
plant (53.45) in africa	n marigold in black	NPK @ 20:10:20 g/m ² and
plastic mulch. Simila	r results were also	with NPK @ 0: 0: 0 g/m^2 .
reported by Kumar et a	$ul.^{18}$, in rose when the	

black plastic sheet. greement with the et al.19, in sweet plications of black ith nitrogen and igher doses had a of growth and s resulting in better re flowers per plant lication of nitrogen oses. Chezhiyan et ber of flowers per ring 1984 and 1985 $X @ 20: 20: 20 g/m^2$ vas applied at lower vas given. Barad et mber of flowers per 32.90 cm) with the els of fertilizers of d minimum (11.73)

N & K application Mulches	N ₀ K ₀ (Control)	N ₁ K ₁ (20gN+10gK/m ²)	$N_2 K_2$ (30gN+20gK/m ²)	N ₃ K ₃ (40gN+30gK/m ²)	Mean
M ₁ (No mulch)	232.00	246.00	255.00	262.70	248.92
M ₂ (Crop residue mulch)	234.66	251.00	257.76	264.03	251.86
M ₃ (Silver plastic mulch)	236.00	254.00	259.23	264.66	253.47
M ₄ (Black plastic mulch)	246.33	256.63	262.63	266.13	257.93
Mean	237.25	251.90	258.65	264.38	
CD _{0.05}		M: 0.98	; NK:0.98; M×NK:1	.96	

Table 6: Effect of mulch, N and K application and their interaction on number of flowers per plant of annual chrysanthemum

Maximum flower diameter (5.59 cm) was recorded with the use of black plastic mulch (M_4) and found to be significantly higher over all other mulching treatments (Table 7) whereas, minimum flower diameter (5.42 cm) was recorded with no mulch (M_1) and found to be statistically at par with M_2 (5.18 cm). The application of 40 g N + 30 g K/m² (N₃K₃) resulted in the production of largest size flowers (5.81 cm) and found to be statistically superior to all other doses. However, minimum flower diameter (5.19 cm) was observed with no application of nitrogen and potassium (N_0K_0) *i.e.* control. The interaction effects of mulches, N and K applications $(M \times NK)$ have Copyright © Nov.-Dec., 2018; IJPAB

exhibited non-significant effects on flower diameter. Maximum flower diameter (6.03 cm) was recorded in the interaction, $M_4 \times$ N_3K_3 *i.e.* with the combined effects of black plastic mulch and fertilization with 40 g N/m^2 + 30 g K/m². The flower diameter was recorded minimum (5.18 cm) with no application of nitrogen, potassium and mulch $(M_1 \times N_0 K_0)$. Flower diameter increased with the use of mulching and found to be maximum in black polythene mulch due to the fact that black colour polythene sheet has more capacity to regulate soil temperature than other mulch materials. In addition to this, no weed infestation was seen under black polythene

Int. J. Pure App. Biosci. 6 (6): 1127-1138 (2018)

mulch treatment, besides creating a more favourable micro-climate for the growth and flowering of plants in comparison to other mulches. Similar results were reported by Kumar *et al.*¹⁸, in rose when the plants were mulched with black polythene mulch. Maximum flower diameter was obtained with higher doses of nitrogen and potassium in comparison to lower doses especially with the use of black plastic mulch. This might be due to increased photosynthetic activity and better vegetative growth obtained under higher dose of nitrogen and potassium, which led to production of better size and quality of flowers as compared to other doses. Hamlin and Mills¹¹ reported in pansy (*Viola* \times *wittrockiana*) that more potassium was absorbed after the flowers were opened because potassium ion stimulates petal cell expansion.

N & K application Mulches	N ₀ K ₀ (Control)	N ₁ K ₁ (20gN+10gK/m ²)	$N_2 K_2$ (30gN+20gK/m ²)	N ₃ K ₃ (40gN+30g/Km ²)	Mean
M ₁ (No mulch)	5.18	5.27	5.58	5.64	5.42
M ₂ (Crop residue mulch)	5.37	5.47	5.33	5.78	5.49
M ₃ (Silver plastic mulch)	4.83	4.53	5.13	5.77	5.07
M ₄ (Black plastic mulch)	5.39	5.54	5.51	6.03	5.59
Mean	5.19	5.20	5.39	5.81	
CD _{0.05}		M: 0.27; N	K: 0.27; M × NK:	NS	

Table 7: Effect of mulch, N and K application and their interaction on flower diameter of annual chrysanthemum
--

Maximum number of seeds per flower head (234.41) was recorded with the black plastic mulch (M_4) and found to be significantly higher over all other mulching treatments (Table 8). Whereas, minimum number of seeds per flower head (227.84) was produced with no mulching (M_1) . The application of nitrogen and potassium doses also exhibited significant effect on number of seeds per flower head. Maximum number of seeds per flower head (240.35) was produced with the application of 40 g N + 30g K $/m^2$ (N₃K₃) and found to be statistically higher to all other doses. However, minimum seeds per flower head (222.73) were recorded with no application of nitrogen and potassium (N_0K_0) *i.e.* control. The interaction effect of mulches, N and K application (M \times NK) also exhibited significant effect on number of seeds per flower head. Maximum number of seeds per flower head (244.66) was produced with the interaction $M_4 \times N_3 K_3$ *i.e.* combined effect of mulching with black plastic sheet and fertilization with 40 g N/m² + 30 g K/m^2 . The number of seeds per flower head was recorded to be minimum (217.66) in $M_1 \times$ N₀K₀ *i.e.* when no application of nitrogen,

potassium and mulch was given. Number of seeds per flower head increased significantly when the plants were mulched with black plastic sheet. The increased number of seeds per flower head might be because of increased levels of nitrogen and potassium as they had role in increasing carbohydrates production and their quick translocation to the developing capsules. Singh³³ reported maximum number of seeds per pod (62.0) in pansy with 25 g N/m^2 and minimum (52.1) with no application of nitrogen. John et al.¹⁵, also observed maximum number of seeds per capsule in pansy with 30 g N/m². Rahmani et al.²⁶, found more number of seeds per head (29.25) in calendula with 90 kg N/ha and minimum (24.0) with 30 kg N/ha. Samoon and Kirad²⁷ recorded maximum number of seeds per flower head (46.14) in calendula var. 'Touch of Red Mix' with 150 kg N/ha and minimum (33.72) with 0 kg N/ha. Mansouri and Shokoohfar²¹ also reported maximum number of seeds per pod (7.27) in cow pea with the application of highest dose of potassium i.e.140 kg/ha and minimum (5.92) with 0 kg/ha (control).

ISSN: 2320 - 7051

Sanas *et al*

Int. J. Pure App. Biosci. 6 (6): 1127-1138 (2018)

N & K application Mulches	N ₀ K ₀ (Control)	N ₁ K ₁ (20gN+10gK/m ²)	$N_2 K_2$ (30gN+20gK/m ²)	N ₃ K ₃ (40gN+30gK/m ²)	Mean
M ₁ (No mulch)	217.66	226.46	231.50	235.73	227.84
M ₂ (Crop residue mulch)	223.00	229.00	234.13	239.00	231.28
M ₃ (Silver plastic mulch)	225.00	230.97	235.86	242.00	233.45
M ₄ (Black plastic mulch)	225.26	230.77	236.96	244.66	234.41
Mean	222.73	229.30	234.61	240.35	
CD _{0.05}	M:0.65; NK:0.65; M × NK:1.30				

 Table 8: Effect of mulch, N and K application and their interaction on number of seeds per flower head of annual chrysanthemum

Maximum seed yield per plant (9.19 g) was recorded with the application of black plastic mulch (M_4) and was found significantly higher over all other mulching treatments (Table 9). Whereas, minimum seed yield per plant (8.73 g) was observed with no mulch (M_1) . The maximum seed yield per plant (9.73 g) was reported with the application of 40 g N + 30 gK $/m^2$ (N₃K₃) and found to be statistically superior to all other doses. However, minimum seed yield per plant (8.45 g) was found in the control (i.e. with no application of nitrogen and potassium). The interaction effects of mulches, N and K applications $(M \times NK)$ also exhibited significant effect on seed yield per plant. Maximum seed yield per plant (10.17 g) was recorded in the interaction, $M_4 \times N_3 K_3 i.e.$ combined effect of mulching with black plastic mulch and application of 40 g N/m^2 + 30 g K/m^2 . The seed yield per plant was found to be minimum (8.29 g) in $M_1 \times N_0 K_0$ *i.e.* when no application of nitrogen, potassium and mulch

was given. The combined applications of nitrogen and potassium especially at higher doses had a positive effect on seed yield. Seed yield increased with an increase in levels of nitrogen and potassium fertilization. This could be due to the fact that higher application of nutrients (N and K) have contributed notably for the production of more number of flowers per plant as well as highest seed yield per flower head, besides producing more bold and quality seeds. The results got support from the work of Narayanan²⁵ who reported maximum seed yield per plant (1.72 g) in plots fertilized with higher doses of NPK (@ 60: 30: 30 kg/ha) and minimum (1.22 g) in control (without fertilizer application). The conjoint use of mulching as well as application of higher doses of nutrients (N and K) have resulted in the production of more flowers per plant as well as highest seed yield per flower head, hence contributed for more seed yield per plant.

N & K application Mulches	N ₀ K ₀ (Control)	N ₁ K ₁ (20gN+10gK/m ²)	$N_2 K_2$ (30gN+20gK/m ²)	N ₃ K ₃ (40gN+30gK/m ²)	Mean
M ₁ (No mulch)	8.29	8.40	8.84	9.38	8.73
M ₂ (Crop residue mulch)	8.50	8.62	8.91	9.70	8.93
M ₃ (Silver plastic mulch)	8.40	8.75	9.06	9.89	9.02
M ₄ (Black plastic mulch)	8.63	8.77	9.19	10.17	9.19
Mean	8.45	8.64	9.00	9.78	
CD _{0.05}		M: 0.07; NK: 0.07; M × NK: 0.15			

Table 9: Effect of mulch, N and K application and their interaction on Seed yield per plant (g) of annual chrysanthemum

Maximum seed yield per plot (82.73 g) was recorded with the use of black plastic mulch (M_4) and found to be significantly higher over all other mulching treatments (Table 10). Whereas, minimum seed yield per plot (78.59) was found in the control (M_1) . The application of 40 g N + 30 g K $/m^2$ (N₃K₃) resulted in maximum seed yield per plot (88.09 g) and found to be statistically superior to all other doses. However, minimum seed yield per plot (76.11 g) was recorded when with no application of nitrogen and potassium (N_0K_0) was given *i.e.* control. The interaction effects of mulches, N and K applications $(M \times NK)$ had also influenced seed yield per plot significantly. The interaction, $M_4 \times N_3 K_3$ resulted in maximum seed yield per plot (91.56 g) and it was found to be significantly higher over other treatments. However, seed yield per plot was found to be minimum (74.68 g) with the interactive effects of $M_1 \times$ N_0K_0 *i.e.* when no application of nitrogen, potassium and mulch was practiced. The application of black plastic mulch in combination with higher doses of nitrogen and potassium have resulted in the production of more flowers per plant, maximum seeds per flower head as well as higher seed yield per

plant. Seed yield increased with combined application of nitrogen and potassium along with black plastic mulch which could be as a consequence of the fact that mulching improves better nutrition absorption and weed control as a result of which more growth of plant occurred and seed yield per plant might Hence, this have increased. treatment combination had produced highest seed yield per plot. Kalaghatagh et al.¹⁷, reported maximum seed yield (53.50 g/ha) in maize when plants were mulched with black plastic sheet and fertilized with recommended doses of NPK as compared to control (36.20 q/ha). Similarly, Narayanan²⁵ reported maximum seed yield per plot (11.8 g) in phlox with the application of NPK @ 60: 30: 30 kg/ha and minimum seed yield (7.7 g) in control (without fertilizer application). Samoon and Kirad²⁷. also observed maximum seed yield (115.10 kg/ha) in calendula var. 'Touch of Red Mix' with 150 kg N/ha and minimum (53.76 kg/ha) with 0 kg N/ha. Mansouri and Shokoohfar²¹ reported maximum seed yield (1479.91 kg/ha) in cow pea with the application of higher dose of potassium *i.e.*140 kg/ha and minimum (1204.75 kg/ha) with 0 kg/ha.

N & K application Mulches	N ₀ K ₀ (Control)	N_1K_1 (20gN+10gK/m ²)	$N_2 K_2$ (30gN+20gK/m ²)	N ₃ K ₃ (40gN+30gK/m ²)	Mean
M ₁ (No mulch)	74.68	75.67	79.56	84.46	78.59
M ₂ (Crop residue mulch)	76.50	77.64	80.23	87.30	80.41
M ₃ (Silver plastic mulch)	75.60	78.76	81.56	89.03	81.24
M ₄ (Black plastic mulch)	77.66	78.96	82.73	91.56	82.73
Mean	76.11	77.76	81.02	88.09	
CD _{0.05}	M:0.69; NK:0.69; M × NK:1.38				

Table 10: Effect of mulch, N and K application and their interaction on seed yield per plot (g) of annual chrysanthemum

CONCLUSION

Use of organic amendments with chemical fertilization is of vital importance and of great

need in modern era. So as to get better growth, flowering characters and yield, the annual chrysanthemum should be fertilized with Int. J. Pure App. Biosci. 6 (6): 1127-1138 (2018)

Sanas *et al*

40gN/m² + 30 g K/m² and mulched with black plastic sheet.

REFERENCES

- 1. Arora, J.S., Introductory Ornamental Horticulture. Kalyani Publishers, New Delhi. pp. 203 (1990).
- Ashrafuzzaman, M., Halim, M.A., Ismail, M.R., Shahidullah, S.M. and Hossain, M.A., Effect of plastic mulch on growth and yield of chilli (*Capsicum annuum* L.). *Brazilian Archives of Biology and Technology* 54(2): 321-330 (2011).
- Barad, A.V., Nandre, B.M. and Sonwalkar, N.H., Effect of NPK levels on gerbera cv. 'Sangria' under net house conditions. *Indian Journal of Horticulture* 67(3): 421-424 (2010).
- Bhardwaj, R.L., Bench mark survey on effect of mulching material on crop production. Krishi Vigyan Kendrs, Sirohi, MPUAT Udaipur, pp.12-15 (2011).
- Chawla, S.L., Response of african marigold to irrigation and mulching. *Journal of Ornamental Horticulture* 11(2): 131-135 (2008).
- Chezhiyan, N., Nanjan, K. and Khader, A., Studies on nutrient requirement of *Chrysanthemum indicum* cv. 'CO-1'. *South Indian Horticulture* 34(3): 73-178 (1986).
- Desai, B.L., Chrysanthemum. In: Seasonal flowers, Ed. Desai B L. ICAR, New Delhi. pp. 64-65 (1962).
- Dorajeerao, A.V.D., Mokashi, A.N, Patil, V.S., Venugopal, C.K., Lingaraju, S. and Koti, R.V., Effect of graded levels of nitrogen and phosphorus on growth and yield of garland chrysanthemum (*Chrysanthemum coronarium* L.). *Karnataka Journal of Agricultural Science* 25(2): 224-228 (2012).
- Easmin, D., Islam, M.J. and Begum, K., Effect of different levels of nitrogen and mulching on the growth of Chinese cabbage (*Brassica campestris* var. '*Pekinensis*'). *Progressive Agriculture* 20(1-2): 27-33 (2009).

- 10. Gomez, K.A. and Gomez, A.A., Statistical Procedure for Agricultural Research, New York: John Wily and Sons. 690p (1984).
- Hamlin, R.L. and Mills, H.A., Pansy floral development and nutrient absorption as influenced by temperature, nitrogen form and stage of plant development. *Journal of Plant nutrition.* 24(12): 1975-1985 (2001).
- Islam, K.S., Miah, M.H.A. and Ahmad, S.U., Effect of mulch and different levels of N and K on the growth and yield of onion. *Progressive Agriculture* 21(1-2): 39-46 (2010).
- JAVID, Q.A., ABBASI, N.A., HAFIZ, I.A. AND MUGHAL, A.L., PERFORMANCE OF ZINNIA (ZINNIA ELEGANS) 'Dahlia Flowered' Crimson Shade by Application of NPK Fertilizer. INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY 7(3): 474-476 (2005).
- 14. JAYAPRABHA, P. AND SHAKILA, A., EFFECT OF NITROGEN AND POTASSIUM ON GROWTH AND YIELD OF CELOSIA (*CELOSIA PLUMOSE* L.). South Indian Horticulture **50(4-6):** 649-652 (2002).
- Jhon, A.Q., Saini, S.S. and Sharma, P.P., Effect of nitrogen, phosphorus and plant spacing on seed yield in pansy (Viola tricolor hortensis L.). Progressive Horticulture 18(3-4): 249-255 (1986).
- 16. Joiner, J.N. and Smith, T.C., Effect of nitrogen and potassium levels on growth and flowering response on *Chrysanthemum morifolium* cv. 'Blue chip' grown in sand culture. *Proceedings* of the American Society for Horticultural sciences 80: 57 (1962).
- Kalaghatagh, S.B., Kulkarni, G.N., Prabhakar, A.S. and Palled, Y.B., Effect of mulch on the use of irrigation water and grain yield in maize. *Karnataka Journal of Agricultural Sciences.* 3(3&4): 183-188 (1990).
- Kumar, S., Chakraborty, B. and Singh, N., Effect of different mulching materials in Rose (Rosa spp L.) cv. Laher. *Journal of Ornamental Horticulture*. **13(2):** 95-100 (2010).

- Locher, J., Ombodi, A., Kassai, T. and Dimeny, J., Influence of coloured mulches on soil temperature and yield of sweet pepper. *European Journal of Horticultural Science* 70(3): 135-141 (2005).
- 20. Lunt, O.R. and Kofranek, A.H., Proceedings of the American Society for Horticultural Sciences 72: 487 (1958).
- Mansouri, S. and Shokoohfar, A., Effect of potassium fertilizer and irrigation intervals levels on yield and yield components of cowpea (*Vigna unguiculata*) in ahvaz condition. *Indian Journal of Fundamental and Applied Life Sciences* 5(1): 26-32 (2015).
- 22. Meshram, N., Badge, S., Bhongle, S.A. and Khiratkar, S.D., Effect of bioinoculants with graded doses of NPK on flowering, yield attributes and economics of annual chrysanthemum. *International Journal of Plant and Soil Science* **18(1)**: 217-220 (2008).
- 23. Mishra, R.L., Mishra, S.D. and Mishra, S., Annual chrysanthemum - A good host of root knot nematode (*Meloidogyne* spp.). *Journal of Ornamental Horticulture* 5(2): 65 (2002).
- 24. Murugan, M. and Gopinath, G., Effect of organic and inorganic mulches on growth and flowering of crossandra. *Research on Crops* 2(1): 346-350 (2001).
- 25. Narayanan, G.S., Influence of different combinations of nitrogen, phosphorus and potassium on seed yield and quality in phlox (*Phlox drumondii*) cv. 'Globe Mix'. *International Journal of Agricultural Science* 2(2): 436-437 (2006).
- 26. Rahmani, N., Daneshian, J. and Farahani, H.A., Effects of nitrogen fertilizer and irrigation regimes on seed yield of calendula (*Calendula officinalis* L.). *Journal of Agricultural Biotechnology and Sustainable Development* 1(1): 24-28 (2009).
- 27. Samoon, S.A. and Kirad, K.S., Effect of nitrogen and phosphorus on seed yield parameters of calendula (*Calendula* officinalis L.) var. 'Touch of Red Mix'. *Progressive Horticulture* 45(1): 149-151 (2013).

- 28. Sarolia, D.K. and Bhardwaj, R.L., Effect of mulching on crop production under rainfed condition: A Review. *International Journal of Research in Chemistry and Environment* **2:** 8-20 (2012).
- 29. SHARMA, B.P., SHARMA, Y.D. AND DILTA, B.S., EFFECT OF NPK NUTRITION ON GROWTH AND FLOWERING OF CHRYSANTHEMUM (*DENDRANTHEMA GRANDIFLORUM* TZELEVE). *INTERNATIONAL JOURNAL OF PLANT SCIENCES* 1(1): 32-35 (2006).
- 30. SHARMA, G. AND SINGH, P., RESPONSE OF N, P AND K ON VEGETATIVE GROWTH, FLOWERING AND CORM PRODUCTION IN GLADIOLUS UNDER MANGO ORCHARD. JOURNAL OF ORNAMENTAL HORTICULTURE 10(1): 52-54 (2007).
- 31. SHARMA, P., THAKUR, P., GUPTA, Y.C. AND DHIMAN, S.R., Effect of nitrogen, phosphorus and potassium on growth and flowering of *Barleria cristata* Linn. *Indian Journal of Horticulture* **70(3):** 442-447 (2013).
- 32. Shinde, U.R., Firake, N.N., Dhotery, R.S. and Banker, M.C., Effect of microirrigation systems and mulches on microclimate factors and development of crop coefficient models for summer chilli. *Journal of Maharashtra Agricultural University* 24: 72-75 (1999).
- 33. Singh, A., Studies on the seed production of pansy (Viola x tricolor L.) var. 'Hiemalis Mix'. M.Sc. Thesis. Punjab Agricultural University, Ludhiana (Punjab) India (1978).
- 34. Srivastava, P.K., Parikh, M.M., Sawani, N.G. and Raman, S., Effect of drip irrigation and mulching on tomato yield. *Water Management* 25: 179-184 (1994).
- 35. Thaneshwari., Effect of nitrogen and potassium on growth and flowering of hydrangea (*Hydrangea macrophylla* Thunb.). MSc.Thesis. Dr.Yashwant Singh Parmar University of Horticulture and Foresrty, Nauni, Solan (H.P.) India. (2014).